skip to main content


Search for: All records

Creators/Authors contains: "Vandvik, Vigdis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ecological theory posits that temporal stability patterns in plant populations are associated with differences in species' ecological strategies. However, empirical evidence is lacking about which traits, or trade-offs, underlie species stability, especially across different biomes. We compiled a worldwide collection of long-term permanent vegetation records (greater than 7000 plots from 78 datasets) from a large range of habitats which we combined with existing trait databases. We tested whether the observed inter-annual variability in species abundance (coefficient of variation) was related to multiple individual traits. We found that populations with greater leaf dry matter content and seed mass were more stable over time. Despite the variability explained by these traits being low, their effect was consistent across different datasets. Other traits played a significant, albeit weaker, role in species stability, and the inclusion of multi-variate axes or phylogeny did not substantially modify nor improve predictions. These results provide empirical evidence and highlight the relevance of specific ecological trade-offs, i.e. in different resource-use and dispersal strategies, for plant populations stability across multiple biomes. Further research is, however, necessary to integrate and evaluate the role of other specific traits, often not available in databases, and intraspecific trait variability in modulating species stability. 
    more » « less
    Free, publicly-accessible full text available June 28, 2024
  2. The relative contribution of bryophytes to plant diversity, primary productivity, and ecosystem functioning increases towards colder climates. Bryophytes respond to environmental changes at the species level, but because bryophyte species are relatively difficult to identify, they are often lumped into one functional group. Consequently, bryophyte function remains poorly resolved. Here, we explore how higher resolution of bryophyte functional diversity can be encouraged and implemented in tundra ecological studies. We briefly review previous bryophyte functional classifications and the roles of bryophytes in tundra ecosystems and their susceptibility to environmental change. Based on shoot morphology and colony organization, we then propose twelve easily distinguishable bryophyte functional groups. To illustrate how bryophyte functional groups can help elucidate variation in bryophyte effects and responses, we compiled existing data on water holding capacity, a key bryophyte trait. Although plant functional groups can mask potentially high interspecific and intraspecific variability, we found better separation of bryophyte functional group means compared with previous grouping systems regarding water holding capacity. This suggests that our bryophyte functional groups truly represent variation in the functional roles of bryophytes in tundra ecosystems. Lastly, we provide recommendations to improve the monitoring of bryophyte community changes in tundra study sites. 
    more » « less
  3. Abstract

    Estimating phenotypic distributions of populations and communities is central to many questions in ecology and evolution. These distributions can be characterized by their moments (mean, variance, skewness and kurtosis) or diversity metrics (e.g. functional richness). Typically, such moments and metrics are calculated using community‐weighted approaches (e.g. abundance‐weighted mean). We propose an alternative bootstrapping approach that allows flexibility in trait sampling and explicit incorporation of intraspecific variation, and show that this approach significantly improves estimation while allowing us to quantify uncertainty.

    We assess the performance of different approaches for estimating the moments of trait distributions across various sampling scenarios, taxa and datasets by comparing estimates derived from simulated samples with the true values calculated from full datasets. Simulations differ in sampling intensity (individuals per species), sampling biases (abundance, size), trait data source (local vs. global) and estimation method (two types of community‐weighting, two types of bootstrapping).

    We introduce thetraitstrapR package, which contains a modular and extensible set of bootstrapping and weighted‐averaging functions that use community composition and trait data to estimate the moments of community trait distributions with their uncertainty. Importantly, the first function in the workflow,trait_fill, allows the user to specify hierarchical structures (e.g. plot within site, experiment vs. control, species within genus) to assign trait values to each taxon in each community sample.

    Across all taxa, simulations and metrics, bootstrapping approaches were more accurate and less biased than community‐weighted approaches. With bootstrapping, a sample size of 9 or more measurements per species per trait generally included the true mean within the 95% CI. It reduced average percent errors by 26%–74% relative to community‐weighting. Random sampling across all species outperformed both size‐ and abundance‐biased sampling.

    Our results suggest randomly sampling ~9 individuals per sampling unit and species, covering all species in the community and analysing the data using nonparametric bootstrapping generally enable reliable inference on trait distributions, including the central moments, of communities. By providing better estimates of community trait distributions, bootstrapping approaches can improve our ability to link traits to both the processes that generate them and their effects on ecosystems.

     
    more » « less
  4. null (Ed.)
  5. Snow is an important driver of ecosystem processes in cold biomes. Snow accumulation determines ground temperature, light conditions, and moisture availability during winter. It also affects the growing season’s start and end, and plant access to moisture and nutrients. Here, we review the current knowledge of the snow cover’s role for vegetation, plant-animal interactions, permafrost conditions, microbial processes, and biogeochemical cycling. We also compare studies of natural snow gradients with snow experimental manipulation studies to assess time scale difference of these approaches. The number of tundra snow studies has increased considerably in recent years, yet we still lack a comprehensive overview of how altered snow conditions will affect these ecosystems. Specifically, we found a mismatch in the timing of snowmelt when comparing studies of natural snow gradients with snow manipulations. We found that snowmelt timing achieved by snow addition and snow removal manipulations (average 7.9 days advance and 5.5 days delay, respectively) were substantially lower than the temporal variation over natural spatial gradients within a given year (mean range 56 days) or among years (mean range 32 days). Differences between snow study approaches need to be accounted for when projecting snow dynamics and their impact on ecosystems in future climates. 
    more » « less
  6. The stability of ecological communities is critical for the stable provisioning of ecosystem services, such as food and forage production, carbon sequestration, and soil fertility. Greater biodiversity is expected to enhance stability across years by decreasing synchrony among species, but the drivers of stability in nature remain poorly resolved. Our analysis of time series from 79 datasets across the world showed that stability was associated more strongly with the degree of synchrony among dominant species than with species richness. The relatively weak influence of species richness is consistent with theory predicting that the effect of richness on stability weakens when synchrony is higher than expected under random fluctuations, which was the case in most communities. Land management, nutrient addition, and climate change treatments had relatively weak and varying effects on stability, modifying how species richness, synchrony, and stability interact. Our results demonstrate the prevalence of biotic drivers on ecosystem stability, with the potential for environmental drivers to alter the intricate relationship among richness, synchrony, and stability. 
    more » « less
  7. Abstract

    Seed dispersal and local filtering interactively govern community membership and scale up to shape regional vegetation patterns, but data revealing how and why particular species are excluded from specific communities in nature are scarce. This lack of data is a missing link between our theoretical understanding of how diversity patterns can form and how they actually form in nature, and it hampers our ability to predict community responses to climate change. Here, we compare seed, seedling, and adult plant communities at 12 grassland sites with different climates in southern Norway to examine how community membership is interactively shaped by seed dispersal and local filtering, and how this process varies with climate across sites. To do this, we divide species at each site into two groups:locally transientspecies, which occur as seeds but are rare or absent as adults (i.e., they arrive but are filtered out), andlocally persistentspecies, which occur consistently as adults in annual vegetation surveys. We then ask how and why locally transient species are disfavored during community assembly. Our results led to four main conclusions: (1) the total numbers of seeds and species that arrived, but failed to establish locally persistent populations, rose with temperature, indicating an increase in the realized effects of local filtering on community assembly, as well as an increase in the number of species poised to rapidly colonize those warmer sites if local conditions change in their favor, (2) locally transient species were selectively filtered out during seedling emergence, but not during seedling establishment, (3) selective filtering was partly driven by species climate preferences, exemplified by the poor performance of seeds dispersing outside of their realized climate niches into colder and drier foreign climates, and (4) locally transient species had traits that likely made them better dispersers (i.e., smaller seeds) but poorer competitors for light (i.e., shorter statures and less persistent clonal connections) than locally persistent species, potentially explaining why these species arrived to new sites but did not establish locally persistent adult populations. Our study is the first to combine seed, seedling, and adult survey data across sites to rigorously characterize how seed dispersal and local filtering govern community membership and shape climate‐associated vegetation patterns.

     
    more » « less
  8. null (Ed.)